(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(g(z0), z1) → f(z0, n__f(n__g(z0), activate(z1)))
f(z0, z1) → n__f(z0, z1)
g(z0) → n__g(z0)
activate(n__f(z0, z1)) → f(activate(z0), z1)
activate(n__g(z0)) → g(activate(z0))
activate(z0) → z0
Tuples:
F(g(z0), z1) → c(F(z0, n__f(n__g(z0), activate(z1))), ACTIVATE(z1))
ACTIVATE(n__f(z0, z1)) → c3(F(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c4(G(activate(z0)), ACTIVATE(z0))
S tuples:
F(g(z0), z1) → c(F(z0, n__f(n__g(z0), activate(z1))), ACTIVATE(z1))
ACTIVATE(n__f(z0, z1)) → c3(F(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c4(G(activate(z0)), ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
f, g, activate
Defined Pair Symbols:
F, ACTIVATE
Compound Symbols:
c, c3, c4
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
F(g(z0), z1) → c(F(z0, n__f(n__g(z0), activate(z1))), ACTIVATE(z1))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(g(z0), z1) → f(z0, n__f(n__g(z0), activate(z1)))
f(z0, z1) → n__f(z0, z1)
g(z0) → n__g(z0)
activate(n__f(z0, z1)) → f(activate(z0), z1)
activate(n__g(z0)) → g(activate(z0))
activate(z0) → z0
Tuples:
ACTIVATE(n__f(z0, z1)) → c3(F(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c4(G(activate(z0)), ACTIVATE(z0))
S tuples:
ACTIVATE(n__f(z0, z1)) → c3(F(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c4(G(activate(z0)), ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
f, g, activate
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c3, c4
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__f(z0, z1)) → c3(F(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c4(G(activate(z0)), ACTIVATE(z0))
We considered the (Usable) Rules:
activate(n__f(z0, z1)) → f(activate(z0), z1)
activate(n__g(z0)) → g(activate(z0))
activate(z0) → z0
g(z0) → n__g(z0)
f(z0, z1) → n__f(z0, z1)
And the Tuples:
ACTIVATE(n__f(z0, z1)) → c3(F(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c4(G(activate(z0)), ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVATE(x1)) = [5]x1
POL(F(x1, x2)) = 0
POL(G(x1)) = [4]
POL(activate(x1)) = [3]
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(f(x1, x2)) = [3] + [3]x1 + [3]x2
POL(g(x1)) = [5] + x1
POL(n__f(x1, x2)) = [4] + x1 + x2
POL(n__g(x1)) = [4] + x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(g(z0), z1) → f(z0, n__f(n__g(z0), activate(z1)))
f(z0, z1) → n__f(z0, z1)
g(z0) → n__g(z0)
activate(n__f(z0, z1)) → f(activate(z0), z1)
activate(n__g(z0)) → g(activate(z0))
activate(z0) → z0
Tuples:
ACTIVATE(n__f(z0, z1)) → c3(F(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c4(G(activate(z0)), ACTIVATE(z0))
S tuples:none
K tuples:
ACTIVATE(n__f(z0, z1)) → c3(F(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__g(z0)) → c4(G(activate(z0)), ACTIVATE(z0))
Defined Rule Symbols:
f, g, activate
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c3, c4
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))